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a b s t r a c t

This paper is the first part of the theoretical work devoted to electrical cross effects in biporous media
with ice inclusions. The fine-pored part of the medium is saturated by the electrolytic solution.

A heat and mass transfer problem is formulated for an elementary cell of the medium on basis of dif-
fusion mechanism. An equation set is proposed for finding the temperature, pressure, concentration, and
electric potential fields. All the heat and mass flows through the cell depend on the cross thermodynam-
ical forces.

In the closed system the electric polarization induced by temperature gradient depends on the hydro-
conductivity of the fine-pored medium, the solution concentration and the ice content. At the low solu-
tion concentration and the high hydroconductivity the thermoelectric potential difference may be as
great as 150 mV K�1.

In the open system the ice presence has no effect on the diffusion potential difference induced by con-
centration gradient.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is commonly supposed that the formation of the dissipative
structures in the thermodynamic system is realized far away from
equilibrium state [1]. That condition, seemingly, is not necessary
for the heterogeneous systems with the developed interface. In
particular, the various structures appear in the dispersion medium
with the coupled phase transformations at a small departure from
the equilibrium [2]. Those systems frequently occur in nature, and
therefore their investigation is essential to science and practice
alike.

The freezing of the fine-grained saturated soils leads to transfer-
ring the moisture from the unfrozen soil to the phase transforma-
tion region, redistributing the soil components and increasing the
ice content. Although the investigations of those systems have
the long-standing history but the many problems are remaining
unresolved. One of them is the role of ice in the transfer processes,
and in particular the cross electrical effects.

The ice movement relative to the framework of the porous med-
ium is accompanied by the coupled phase transformations of melt-
ing-freezing. The phase transitions may considerably intensify the
cross-electrical effects. So the water freezing leads to the separa-
tion of the electrical charges (freezing potential) near the ice-water
boundary. The freezing potential depends on the crystallization
rate and reaches hundreds of volts [3]. And vice versa, the charges
introduced in the metastable phase increase the rate of nucleation
ll rights reserved.
[4]. The heat transfer in the freezing soil initiates the mass transfer
processes and formation of the ion accumulation domains [5]. The
potential difference between the frozen and unfrozen soils is
amounts up to 100 mV [6,7].

The cross-electrical properties of the ice-free soils have been
investigated in details [8].

The experimental investigations with frozen soils show a corre-
lation between their mechanical and electrical properties [9]. It is
not improbable that the correlation is the result of the ice–water
phase transition.

The presented paper is the first part of the theoretical work to
determine the influence of the ice movement on the electrical
properties of the systems with the coupled phase transformations.
Certain of the resources of the cross-electrical effects are not con-
sidered in this paper.

When the electric current is absent, the solution flow through a
porous body initiates appearing the electric potential difference
(streaming potential) between the ‘‘input” and ‘‘output” bound-
aries of the sample.

The electric polarization of the ice-free porous medium is ex-
plained by the properties of the electric double layer at the inter-
face of solution-mineral. The ions of the double layer are
differently entrained by the solution flow. As result, the sample
is polarized so that the potential difference between the body
boundaries ensures equality of the inside and outside ion flows.

The value of the polarization depends directly on the volume of
the double layer in porous space. That mechanism of the electric
polarization is a major component of the induced polarization the-
ory [10].

mailto:askold@ikz.ru
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Fig. 1. A fragment of the model porous medium. E1 – ice inclusion, E2 – fine-pored
medium.

Nomenclature

b height of the cell [m], Fig. 2
C transport coefficient
ck amount concentration of k-ion [mol m�3].
cs amount concentration of solution [mol m�3]
cs0 average amount concentration [mol m�3], Eq. (25)
Dk diffusion coefficient of k-ion [m2 s�1]
e elementary charge, e = 1.602�10�19 �C
F Faraday constant, F = 96484[C mol�1]
Je current density across the base of the cell [A m�2]
Jq heat flow across the base of the cell [W m�2]
Js molar solute flow across the base of the cell

[mol m�2 s�1]
JV volume flow across the base of the cell [m s�1]
Jw molar flow of water across the base of the cell

[mol m�2 s�1]
je current density [A m�2]
jk molar flux of k-ion [mol m�2 s�1]
jq heat flux [W m�2]
js molar solute flux [mol m�2 s�1]
jV volume flux [m s�1]
jw molar water flux [mol m�2 s�1]
kB Boltzmann constant, kB = 1.38�10�23 J K�1

Kh hydroconductivity coefficient of fine-pored medium E2

[m3 s kg�1]
n unit vector
p liquid pressure [Pa]
R radius of ice inclusion [m]
Rg gas constant, Rg = 8.31 J K�1 mol�1

Sa area of the cell base [m2], Fig. 2
T temperature [K]
uk electric mobility of k-ion [m2 V�1 s�1]
Vi molar volume of ice [m3 mol�1]
Vk partial molar volume of k-ion in solution [m3 mol�1]
Vw partial molar volume of water in solution [m3 mol�1]
vi velocity of ice [m s�1]
X thermodynamical force
zk charge number of k-ion

Greek symbols
a dimensionless parameter of the cell, pR2/Sa

b dimensionless parameter of the cell, 2R/b
j latent heat of fusion [J mol�1]
k1 thermal conductivity of ice [W m�1 K�1]
k2 thermal conductivity of fine-pored medium

[W m�1 K�1]
l chemical potential [J mol�1]
mk number of k-ion in a solute molecule
Subscripts
i ice
q heat
R surface of inclusion
s solute
w water
Other symbols
r vector gradient operator
rb difference gradient operator, Eq. (23)
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If a porous body contents inclusions of ice, then the external
gradients of the thermodynamic potentials causes the ice move-
ment, the coupled phase transformations of ‘‘melting–freezing”
and, as result, appearing the potential difference at the freezing
boundary (Workman–Reynolds effect), and therefore in the bipor-
ous medium.

Those two mechanisms of the electrical cross effects don’t con-
sidered in the presented work.

2. Problem statement

Consider a biporous body with the regular structure (Fig. 1),
which includes the equal spherical cavities (E1) and the fine-pored
medium (E2). The cavities are filled by ice and the medium E2 is
saturated by binary electrolyte. The system is under the thermody-
namic conditions those forbid ice from melting and penetrating
into the element E2.

The heat and mass transfer is produced by the external gradi-
ents of temperature, liquid pressure, concentration and electric po-
tential. The direction of all gradients coincides with Z-axis (Fig. 1).
Fix the Cartesian co-ordinate system to the solid framework of the
element E2.

The steady-state problem of defining the fluxes through the
medium reduces to the analogous problem for an elementary cell
(Fig. 2). The thermodynamic potentials are specified on the bases
of the cell, and the lateral faces are impenetrable for heat and
matter.

The problem will be solved by the following way. First of all, the
fields of temperature, pressure, concentration and electric poten-
tial will be found, and then the condition of the mechanical equi-
librium of the ice inclusion will be bring in correspondence with
the local phase equilibrium of ice and water. The term local value
respect to the thermodynamic value in the element E2 will be
denoted the value averaged over a representative volume [11],
the size of which is noticeably more than the heterogeneity size.

For simplicity assume that the elements E1 and E2 are homoge-
neous (1); ice is ideal dielectric, doesn’t transmit fluid, and rejects
all foreign matters (2); the framework of the element E2 is rigid and
inactive relate to chemical, ion-exchange, and other reactions (3);
the element E2 is saturated by strong electrolyte, is permeable
for fluid, and hasn’t osmotic and electroosmotic properties (4); in
the solution it isn’t occurred appearing gas (air or vapour) or solid
(ice or solute crystals) phases (5), the system considered is near
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Fig. 2. Scheme of fluxes in an elementary cell. Qlat is heat production at the phase
transition surface.
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equilibrium state (6). Also relative to electrolyte transfer in porous
medium it will be accepted the properties as follow: in the interior
of the elements of E1 and E2 (homogeneous media) the local elec-
trical neutrality is realized (7); the solute transfer in E2 is subjected
to Fick’s law (8); the nonzero electrical charge concentrates at the
contact of elements E1 and E2 (9), the charge density depends on
the value of the external electrostatic force and the rate of the
transport processes (10), the thickness of the charged layer doesn’t
depends on the value of the external disturbance and equals the
double layer thickness in accordance with Debye–Hückel theory
(11); at the interface the total concentration of ions in the solution
doesn’t depend on the value of the charge and is defined by Fick’s
Eq. (12).The detailed substantiation of the given assumptions is
carried out earlier [12].

The point (4) denotes that the transfer properties of the dis-
solved matter in the porous medium are the same as those in the
bulk solution.

In the gradient field of the thermodynamic potentials the ice
inclusion moves relative to the framework of the porous medium.
The movement is accompanied by the couple phase transforma-
tions of freezing – melting, and changes the character of the heat
and mass transfer through the medium. Defining the ice velocity
generates a need for the solution of the thermal, filtration and dif-
fusion problems. The equation set for defining temperature, liquid
pressure, solution concentration and electric potential is presented
in the third section. The boundary conditions are formulated in the
fourth section.

3. Heat and mass transfer equations

Not counting the convective transport of heat the energy con-
servation law and a Fourier law gives Laplace’s equation for tem-
perature in the elements of E1 and E2:

DT ¼ 0 ð1Þ

The derivation of equations for finding the pressure, the concen-
tration, and the electric potential will be given in more details.

Three constituents of the solution (anion, cation and water) are
only transferred through the fine-pored medium E2. Due to the ac-
cepted assumptions the volume flux is subjected to Darcy’s law:

jV ¼ �Khrp ð2Þ

The flux jV is expressed in terms of the molar fluxes of the mix-
ture components [13]:

jV ¼ V1j1 þ V2j2 þ Vwjw ð3Þ
The ordered motion of ions is induced by the three causes: con-
vective transport, diffusion and electric force. The molar fluxes of
ions have the following form [14]:

jk ¼ �ckukru� Dkrck þ ckjV ; k ¼ 1;2 ð4Þ

The ion mobility uk is connected with the diffusion coefficient
Dk by the relation:

Dk ¼
kBTuk

ezk
:

where zke – charge of k-ion (zk is positive for a cation, and negative
for an anion). Notice that the sign of the ion mobility is equal to the
ion sign.

The local electrical neutrality of the element E2

cs ¼
c1

m1
¼ c2

m2

converts the Eq. (4) to the following form:

jk ¼ �mkcsukru� mkDkrcs þ mkcsjV ; k ¼ 1;2 ð5Þ

Combine the fluxes jk and introduce into consideration of the
solute flux js and the current density je:

js ¼ v1j1 þ v2j2 ð6Þ
je ¼ ~z1j1 þ ~z2j2 ð7Þ

where v1 ¼
u2

m1ðu2�u1Þ
;v2 ¼

u1
m2ðu1�u2Þ

;~zk ¼ Fzkðk ¼ 1;2Þ:
Substituting (5) into (6) - (7) and having in view of neutrality of

a solute molecule z1m1 + z2m2 = 0 gives

js ¼ �Dnrcs þ csjV ð8Þ
je ¼ kesrcs þ keeru ð9Þ

where
Dn ¼ ðm1þm2ÞD1D2

m2D1þm1D2
; kes ¼ �ð~z1m1D1 þ ~z2m2D2Þ; kee ¼ �csð~z1m1u1 þ ~z2m2u2Þ:

The conservation law of the matter (water and dissolved
matter)

r � jV ¼ 0;r � js ¼ 0;r � je ¼ 0 ð10Þ

with the transfer laws (2), (8), (9) gives the equations for finding the
thermodynamic potentials in the element E2:

– Laplace’s equation for the liquid pressure p:
Dp ¼ 0 ð11Þ
– Fick’s equation for the solution concentration cs:
Dcs þ
Kh

Dn
r � ðcsrpÞ ¼ 0 ð12Þ
– an equation for the electric potential u:
r � ðcsruÞ � Dn

De
Dcs ¼ 0 ð13Þ

where De ¼ ðm1þm2Þu1u2
m1u1þm2u2

.

4. Boundary conditions

At the bases of the cell the values of temperature, liquid
pressure, solution concentration and electric potential are fixed
at the bottom (z = �b/2):

T ¼ T1;p ¼ p1; cs ¼ cs1;u ¼ u1 ð14Þ

at the top (z = b/2):

T ¼ T2;p ¼ p2; cs ¼ cs2;u ¼ u2 ð15Þ
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Heat and mass transfer through lateral faces of the cell is
absent:

dT
dl
¼ 0;

dp
dl
¼ 0;

dcs

dl
¼ 0;

du
dl
¼ 0 ð16Þ

where d
dl is the derivative normal to the lateral surface of the cell.

At the inclusion surface (contact of ice with fine-pored medium)
the boundary conditions are obtained from the following physical
requirements: continuity of the thermodynamic potentials (tem-
perature and electric potential), conservation of mass and energy
(heat), heat and mass transfer laws (2) and (4), the properties
(1)–(3) in Section 2. Since the symmetry of the boundary condi-
tions (14)–(16) the direction of the ice velocity is the same as Z-
axis, and therefore at the inclusion surface the thermodynamic
potentials satisfy the following relations

– temperature T:
Tjr¼R�0¼ Tjr¼Rþ0 ðtemperature continuityÞ ð17Þ

�k1
@T
@r

����
r¼R�0

� �k2
@T
@r

����
r¼Rþ0

� �
¼jv i cos h=ViðheatbalanceÞ ð18Þ
– liquid pressure p:
@p
@r

����
r¼Rþ0

¼ �Vw

Vi

v i cos h
Kh

ðsolutionbalanceÞ ð19Þ
– solution concentration cs:
@cs

@r
� Vwv i cos h

ViDn
cs

� �����
r¼Rþ0

¼ 0 ðsolute balanceÞ ð20Þ
– electric potential u:
@u
@r

����
r¼Rþ0

¼ Vwv i cos h
ViDe

ðcharge and solute balanceÞ ð21Þ

The ice velocity vi in the Eqs. (18)–(21) is found from the inde-
pendent conditions of the mechanical equilibrium of the inclusion
and the local phase equilibrium of ice and water at the inclusion
surface. In absence of the external force fields these conditions give
the desired equation [2]Z

SR

Vw

Vi
pR �

jTR

T0Vi
þ cw

Vi
csR

� �
ndS ¼ 0 ð22Þ

where pR, TR, and csR is liquid pressure, temperature, and molar con-
centration of solution at the inclusion surface SR; n is an unit vector
perpendicular to dS; cw ¼

@lw
@cs

, lw – chemical potential of water in
solution (for the ideal electrolyte solution cw ¼ �iRgTVw, i – isotonic
factor, i = m1 + m2).

The equation set (14)–(22) is the boundary conditions for the
heat and mass transfer problem, that includes the equation set
for the temperature (1) in the elements E1 and E2, and also for
the pressure (11), the concentration (12), and the electric potential
(13) in the element E2.

A problem consists in defining the flows of the heat, the solution
and the solved matter across the bases of the cell (Fig. 2) at the
boundary conditions (14)–(22).

The problem is solved analytically by the ‘‘anisotropic conduc-
tivity” method and numerically by the modified ‘‘control volume”
method.

5. Heat transfer, filtration and diffusion

Solution of the problem by ‘‘anisotropic conductivity” method
was in detail described formerly [2]. Here, the final results are only
presented, namely the fluxes through the bases of the cell.
5.1. Infinite horizontal conductivity

Jq ¼ k2 �
jv i

V iDk21
� rbT � jv i

V iDk21

� �
� f1

bþ f1ð1� bÞ

� �
ð23Þ

JV ¼
Vwv i

V i
� Khrbpþ Vwv i

V i

� �
f2

bþ f2ð1� bÞ ð24Þ

Js ¼
f2

bþ ð1� bÞf2
½�Dnrbcs � cs0Khrbp� ð25Þ

where rbT ¼ T2�T1
b ;rbp ¼ p2�p1

b ;rbcs ¼ cs2�cs1
b ; cs0 ¼ cs2þcs1

2 ; Dk21=
k2 � k1 and b, et, ep, f1, f2 are dimensionless parameters:

f1 ¼
2et

ð1�e2
t Þ lnj

1þet
1�et
j
;Dk21 < 0

et
ð1þe2

t Þarctget
;Dk21 > 0

8<
: ; f2 ¼

ep

ð1þ e2
pÞarctgep

;

e2
t ¼

j Dk21 j pR2

k2Sa � Dk21pR2 ; e2
p ¼

pR2

Sa � pR2 ;
5.2. Zero horizontal conductivity

Jq ¼ �k2IkrbT � k2jab
k1Vi

v iI3t ð26Þ

JV ¼
Vw

Vi
av i � ð1� aÞKhrbp ð27Þ

Js ¼ �ð1� aÞðDnrbcs þ cs0KhrbpÞ ð28Þ

where a, et0, Ik, I3t are dimensionless parameters:

et0 ¼ b
k2

k1
� 1

� �
; Ik ¼ ð1� aÞ þ 2a

e2
t0

½et0 � lnð1þ et0Þ�;

I3t ¼
1
et0
� 2

e2
t0

þ 2
e3

t0

lnð1þ et0Þ
6. Electroconductivity problem

The problem consists in defining the electric flux through the
bases of the cell. That requires solving the Eq. (13) for electric po-
tential at the boundary conditions (14), (15), (16), and (21). A dis-
solved matter distribution (concentration cs) in the element E2

must be found previously.
In this section the electroconductivity problem will be solved by

the anisotropic conductivity method for two cells with the infinite
and zero horizontal conductivities. Since the system is near the
equilibrium state it will be supposed that the coefficient kee is con-
stant: kee ¼ �cs0ð~z1m1u1 þ ~z2m2u2Þ. In consequence of the accepted
properties of ice (Section 2) the ions are only transferred in the ele-
ment E2. The transfer law (13) and the law of conservation of mat-
ter is a foundation for the solution of the problem.

6.1. Infinite horizontal conductivity

The current density connects with the concentration and elec-
tric potential gradients by Eq. (9). The z components of the gradi-
ents don’t depend on co-ordinate z due to accepted anisotropy.

In the range of z [�b/2, �R] and [R, b/2] the medium homoge-
neous (Fig. 3). In direction of z-axis the current density je is con-
stant and equal to the value of the flux Je through the bases of
the cell. Writing the Eq. (9) in the difference form gives

Je ¼ kes
c0s1 � cs1

b=2� R
þ kee

u01 �u1

b=2� R
ð29Þ

Je ¼ kes
cs2 � c0s2

b=2� R
þ kee

u2 �u02
b=2� R

ð30Þ

where ðp01; c0s1;u01Þ and ðp02; c0s2;u02Þ is pressure, concentration and
electric potential in sections z = �R and z = R accordingly. Summing
Eqs. (29) and (30) produces the following relation
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Jeð1� bÞ ¼ kesðrbcs �rbc0sÞ þ keeðrbu�rbu0Þ ð31Þ

In the region of z�[�R, R] the conservation law of the charge
gives the following relation:

jeS2ðzÞ ¼ JeSa ð32Þ

where je is z-component of the current density je, S2 is area of the
element E2 in the horizontal section z: S2(z) = Sa � p (R2�z2). Substi-
tuting je in (32) from the relation (9) gives an simple differential
equation for defining the electric potential u

kes
dcs

dz
þ kee

du
dz
¼ JeSa

S2ðzÞ
ð33Þ

In general case a function cs must be found previously from the
solution of the diffusion problem. Integrating Eq. (33) with respect
to z from �R to R gives

kesrbc0s þ keerbu0 ¼
Jeb
f2

ð34Þ

Eliminating the parameters rbc0s and rbu0 from Eqs. (31) and
(34) gives an expression for the current density Je:

Je ¼ fwðkesrbcs þ keerbuÞ ð35Þ

where fw ¼ f2
bþð1�bÞf2

.

6.2. Zero horizontal conductivity

In the region of r < R the vertical ion flows are equal to zero
(je1 = 0) because of impearmeable of ice for the foreign matter.
The ion transport in the cell is only realized in the region of r > R
(Fig. 4). The average current density Je through the bases of the cell
connects with the current density je2 in the second region:
Je = (1�a)je2. Writing Eq. (9) in the difference form and substituting
je2 from the last relation gives

Je ¼ ð1� aÞ½kesrbcs þ keerbu� ð36Þ
7. Transfer equations and transport coefficients

The transfer equations content the ice velocity vi, which de-
pends linearly on the temperature, pressure, and concentration
gradients. The expression for the values vi was obtained earlier
using the boundary condition (22) [2]. Here, it is only presented
the final result.
7.1. Infinite horizontal conductivity

Substituting the value of vi:

v i ¼ �xp1rbp�xt1rbT �xs1rbcs

where xp1 ¼ Vw
Vi

fp
den1

;xt1 ¼ � j
T0Vi

ft
den1

; xs1 ¼ cw
Vi

fp
den1

den1 ¼
Vw

Vi

� �2

fp �
2
3

� �
1

Kh
þ j

Vi

� �2 ðft � 2=3Þ
T0Dk21

� cwVwcs0

V2
i Dn

fp �
2
3

� �
;

ft ¼
ð1�f1Þ

½bþð1�bÞf1 �
� ðe

2
t �1Þ
e2

t
;Dk21 < 0

ð1�f1Þ
½bþð1�bÞf1 �

� ðe
2
t þ1Þ
e2

t
;Dk21 > 0

8><
>:

in (23) and (25) having in view (25) and (35) gives the required
expression for the fluxes:

JV ¼ Cpprbpþ Cpsrbcs þ Cperbuþ CpqrbT=T0 ð37Þ

Js ¼ Csprbpþ Cssrbcs þ Cserbuþ CsqrbT=T0 ð38Þ

Je ¼ Ceprbpþ Cesrbcs þ Ceerbuþ CeqrbT=T0 ð39Þ

Jq ¼ Cqprbpþ Cqsrbcs þ Cqerbuþ CqqrbT=T0 ð40Þ

where Cpp ¼ � Khfw þ Vw
Vi

abfpxp1

h i
; Cps ¼ � Vw

Vi
abfpxs1;Cpe ¼ 0; Cpq ¼

� Vw
Vi

abfpxt1T0,

Csp ¼ �cs0Khfw; Css ¼ �Dnfw; Cse ¼ 0; Csq ¼ 0;
Cep ¼ 0; Ces ¼ kesfw; Cee ¼ keefw; Ceq ¼ 0;

Cqp ¼
j
Vi
� abftxp1; Cqe ¼ 0; Cqs ¼

j
Vi
� abftxs1;

Cqq ¼
j
Vi
� abftxt1 � k2fq

� �
T0

ð41Þ

The thermodynamical forces XV, Xs, Xe, which correspond to the
fluxes JV, Js, Je and ensure symmetry of the transport coefficients is
expressed in the terms of the thermodynamical potential gradients
as follow [15,12]

XV ¼ rp�rps; Xs ¼ rps=cs;

Xe ¼ ruþ kprps;

Xq ¼ rT=T0

ð42Þ

where ps = �cwcs/Vw, kp ¼ � VwðD1�D2Þ
cscwðu1�u2Þ

.
The symmetry of the standard coefficients gives the linear rela-

tions between C-coefficients:
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cs Cpp � kpCpe �
Vw

cw
Cps

� �
¼ Csp

Cpe ¼ Cep

Cpq ¼ Cqp

Cse ¼ cs Cep � kpCee �
Vw

cw
Ces

� �

Csq ¼ cs Cqp � kpCqe �
Vw

cw
Cqs

� �

Ceq ¼ Cqe

ð43Þ

The Eq. (43) are verified by the direct substitution of C-coeffi-
cients (41).

7.2. Zero horizontal conductivity

At zero horizontal conductivity the ice velocity is presented as
follow

v i ¼ �xp0rbp�xt0rbT �xs0rbcs

where xp0 ¼
Vw

Vi

1
den0

;

xt0 ¼ �
jk2

T0Vik1

bI3t

deno
;xs0 ¼

cw

Vi

1
den0

;

I3t ¼
1
et0
� 2

e2
t0

þ 2
e3

t0

lnð1þ et0Þ;

den0 ¼
Vw

Vi

� �2

1� 2
3

b

� �
1

Kh
þ j

Vi

� �2 bðI3t � bI4tÞ
T0k1

� cwVwcs0

V2
i Dn

1� 2
3

b

� �
:

Substituting this expression for the velocity vi in (26), (27) and
taking into account of the relations (28) and (36) gives the transfer
equations in the form (37)–(40) with the transport coefficients as
follow

C0
pp ¼ � ð1� aÞKh þ a

Vw

Vi
xp0

� �
;C0

pe ¼ 0; C0
ps ¼ �a

Vw

Vi
xs0;

C0
pq ¼ �a

Vw

Vi
T0xt0;C

0
sp ¼ �ð1� aÞcs0Kh; C0

se ¼ ð1� aÞkse;

C0
ss ¼ ð1� aÞkss;C

0
sq ¼ 0; C0

ep ¼ 0; C0
ee ¼ ð1� aÞkee;

C0
es ¼ ð1� aÞkes; C0

eq ¼ 0; C0
qp ¼

k2j
k1Vi

ab � I3txp0; C0
qe ¼ 0;

C0
qs ¼

k2j
k1Vi

ab � I3txs0;C
0
qq ¼

k2j
k1Vi

ab � I3txt0 � k2Ik

� �
T0

ð44Þ
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Fig. 5. Thermal polarization potential in closed system versus the volume fraction of
coefficients Kh of element E2 [m3 s kg�1]: a – 10�13; b – 10�14 with infinite (1) and zero (2)
0.025–0.05.
where I4t ¼ 2
3et0
� 1

e2
t0
þ 2

e3
t0
� 2

e4
t0

lnð1þ et0Þ. The direct check shows that

the coefficients (44) satisfy the transformed Onsager reciprocal
relations (43).

So the limits of variation have be found for the transport coeffi-
cients by the anisotropic conductivity method. The Eqs. (41) and
(44) give the additional relations for transport coefficients:
Cpe = 0, Csq = 0, Ceq = 0. Therefore, a number of the independent
coefficients are equal to 7. It is not improbable that a detailed anal-
ysis of the system reduces this number.

8. Electrical properties of the medium

The electric conductivity of the medium considered doesn’t de-
pend on the ice velocity (see (35) - (36)), and so the cross-electrical
properties of the cell will be presented in this section.

All calculations are made for the cubic cell. The fine-pored med-
ium E2 is saturated by the NaCl electrolyte that is supposed ideal
(see (22)). The thermal conductivity of the elements E1 and E2

are k1 = 2.2 W m�1 K�1, k2 = 1.54 W m�1 K�1 and the diffusion con-
stants of ions in the porous medium [16] are DNa = 4�10�10 m2 s�1

and DCl = 6�10�10 m2 s�1.

8.1. Electric polarization induced by temperature gradient

In this section the calculation of thermoelectric polarization
was made for the closed cell; i.e. the mass flows through the bases
of the cell are equal to zero (JV = Js = Je = 0). The thermal flow
generates the difference of thermodynamical potentials: liquid
pressure, solution concentration and electric potential. The equa-
tions for finding the potential difference follow from the set
(37)–(39):

Cpprbpþ Cpsrbcs þ CpqXq ¼ 0

Csprbpþ Cserbuþ Cssrbcs ¼ 0

Cesrbcs þ Ceerbu ¼ 0

ð45Þ

Excluding the values of rbp and rbcs from Eqs. (45) gives the
relationship for the thermal electromotive force:

Du ¼ CpqCesCsp

CpsCeeCsp þ CppðCseCes � CeeCssÞ
DT
T0

Substituting in the last equation the coefficients Cee, Ces, Cse, Css

from Eqs. (41) and (44) gives the required value Du for the cells at
0 0.1 0.2 0.3 0.4 0.5
nR

0

0.02

0.04

0.06

0.08

Δϕ
/Δ

T
,  

V
 K

-1

1

2

b

ice at solution concentration cs0=0.0001 mol l�1 and different hydroconductivity
horizontal conductivity. Symbols are the numerical calculations with an accuracy of
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Fig. 6. Thermal polarization potential versus solution concentration cs0 at the volume fraction of ice nR = 0.4 and different hydroconductivity coefficients Kh of element E2

[m3 s kg�1]: a – 10�13; b – 10�14 with infinite (1) and zero (2) horizontal conductivity. Symbols are the numerical calculations with an accuracy of 0.025–0.05.
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infinite horizontal conductivity:

Du1 ¼ �
Cpq

cs0De
Cps
Dn
þ Cpp fw

Csp

	 
 DT
T0

zero horizontal conductivity:

Du0 ¼ �
C0

pq

cs0De
C0

ps
Dn
þ C0

ppð1�aÞ
C0

sp

� � DT
T0

The dependence of the polarization potential on the fraction of
the ice volume in the cell at the electrolyte concentration
0.0001 mol l�1 shows in Fig. 5. The polarization potential becomes
appreciable (�100 mV K�1) when the volume fraction of ice in the
cell nR is greater than 0.3 and the hydroconductivity coefficient is
more than 10�14 m3 s kg�1. At the low hydroconductivity
(Kh < 10�15 m3 s kg�1) the thermal polarization effect is very small
(<10 mV K�1).The influence of the average concentration of the
solution at the fixed ice content (nR = 0.4) is presented in Fig. 6.
The value of the polarization potential decreases monotonically
with increasing the solution concentration. At the sufficiently
small concentration �0.0001 mol l�1 the dissolved matter begins
to influence on the ice velocity, and therefore on the electrical
properties of the cell. At the solution concentration �0.1 mol l�1

the polarization potential decreases more than one order of
magnitude.

The calculation results show that the polarization effect of the
medium becomes apparent at the high hydrocondictivity of porous
media and the low concentration of solutions.

8.2. Electric polarization induced by concentration gradient

Find the sample polarization induced by the concentration dif-
ference along the height of the cell, when the electric current is
equal to zero (Je=0). Transforming Eq. (49) gives an expression for
the electrical potential difference:

Du ¼ � Ces

Cee
Dcs

Substituting in the last equation the C-coefficients from Eqs.
(41) and (44), and using explicit form for k-coefficients (see (9))
gives identical results for cells with zero and infinite horizontal
conductivities:
Du ¼ � ðD1 � D2Þ
cs0ðu1 � u2Þ

Dcs; ð46Þ

The value of the potential difference doesn’t depend on the ice
content and therefore the electro-diffusion effect in the system
considered is the same as in the macroporous media without ice.
The electric potential difference generated by the concentration
drop is named as the diffusion potential [13,17]. The value of the
diffusion potential is found from Eq. (46). When the concentration
difference is approximately equal to the average concentration
(Dcs = cs0), the diffusion potential is equal to �10 mV.
9. Conclusions

In this paper the diffusion mechanism of electric polarization
has only been studied. We exclude the electric double layer and
freezing potential mechanisms from consideration.

In the closed system the electric potential difference is initiated
by the external temperature gradient, which makes to move the ice
inclusion and to produce the concentration gradient in the med-
ium. The value of the effect is approximately so as for the freezing
soils and the ice with the salt inclusions, and greater more than an
order for the pure ice [18].

In the open system the ice movement hasn’t an influence on the
value of the diffusion potential.

In experiments with the freezing soils the electric potential dif-
ference between the frozen and unfrozen soil reaches several tens
of millivolts [6,7]. It is not unlikely that the electric polarization is
induced by the diffusion mechanism. In actual practice all the three
mechanisms make one’s contribution on the charge separation in
the freezing soils. Clearing up the main source of that phenomenon
is the subject matter of the further work.
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